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The least-squares method for calculating scattering wavefunctions is discussed 
with respect to its applicability to molecular scattering events. Choosing an 
LCAO-like expansion, augmented by the appropriate asymptotic free com- 
ponents, for the radial wavefunction, one obtains a practical algorithm. The 
method reduces to the solution of  an inhomogeneous system of linear equations. 
A basis set suitable for the description of molecular scattering events is 
suggested and its dependence on non-linear parameters is discussed. Applica- 
tions are given for elastic s-wave scattering. The computational aspects of the 
method are discussed in detail, as well as generalizations to inelastic and 
reactive collisions. 
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1. Introduction 

Within the last few years increasing interest in molecular collision processes has 
resulted in numerous experimental and theoretical investigations of  elastic, in- 
elastic and reactive processes [1-5]. From the theoretician's point of view all 
information pertinent to these processes is contained in the scattering matrix the 
elements of which are given by 

SE,,~-E,,,,p= (En~- [ E'mfi +) (1) 

E denotes the total energy, m, n the initial and final quantum numbers, and a, fi the 
initial and final asymptotic configurations. [Se,,,~E,,,,t~] 2 is the probability of a 
transition from the initial state E'mfi to the final state Enos-. 

From a practical point of  view the scattering matrix S is obtained from the 



144 K.D. Hfinsel and N. R6sch 

corresponding wave function 

7~(+) (rlEn~ + ) (2) En~. : 

The wave function (2), in turn, is usually obtained by expanding ~ + )  in terms of 
the eigenfunctions of the internal degrees of freedom In~); this is the well-known 
close-coupling expansion. The radial part of the wave function describing the free 
motion in the different channels n~ is obtained by numerical integration of the 
system of coupled equations (cf. [6-8]). Integration of these coupled equations 
presents severe difficulties due to the closed channels which have to be included to 
insure convergence of the expansion. This is particularly true in the case of 
chemical reactions (cf. [9]). Special stabilization techniques have to be employed 
to suppress the (unwanted) exponentially growing solutions in the classically 
forbidden regions. Such techniques have been described among others by Gordon 
[6], Secrest and Johnson [7] and by Manz [8]. Basically, these techniques consist 
of obtaining piecewise solutions, and connecting these solutions. They do not, 
however, afford the wave function directly. For some applications (e.g. evaluating 
matrix elements) knowledge of the wave function may be desirable. 

Furthermore, very efficient techniques have been developed for the calculation of 
bound-state wave functions [ 10], and it might be well worth while considering how 
these techniques might be adapted to the calculation of scattering wave functions. 
This way one could draw on the considerable computational experience of tradi- 
tional quantum chemistry. This idea is followed in the following sections with 
emphasis on the computational point of view. In Section 2 we discuss different 
algebraic expansion techniques and variational principles as applied to scattering 
processes. In Sect. 3 computational aspects are considered in some detail; some 
results on s-wave scattering are given. In Sect. 4 we present variational corrections 
to the phase shift. Finally we discuss the feasibility of extending our calculations to 
inelastic and reactive scattering processes. 

2. Algebraic Expansion Techniques 

In the following we shall address ourselves to the question: Is it possible to build 
scattering wave functions in such a way that as much information as possible is 
included from the start ? It should be clear from the discussion in the introduction 
that this can be done only when we expand the radial part of the wave function in 
terms of a suitable complete set of functions {~bl}, and not when we resort to 
numerical integration. All the problems that come up in connection with algebraic 
expansion techniques arise already with elastic collisions; hence we restrict our- 
selves to this simplest case. 

To be specific, consider the scattering of a particle with angular momentum I at a 
potential V(r), which is assumed to be reasonably well behaved at the origin, i.e. 

V(r) ~ o  O(r-a) 6<1 
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Under this proviso we shall discuss the following model problem 

( J r  - E)(~l/ /r) = 0 

1 d 2 l ( l+ 1) 
- 2m dr 2 + V(r )+ 2 m r ~  (3) 

The following ansatz is made for the wave function 

tIs = S,(r) + tC,(r) + ~ C i 4)i(r) (4) 
i 

The functions Sl(r), Cl(r ) describe the long-range (asymptotic) behaviour of the 
wave function, i.e. 

S,(r) ~~ (kr)j,(kr) 

C,(r) ~ (kr)n z(kr) (5) 

k = (2mE) 1/2 

The qS~ are a set of square integrable functions; they are used to describe the short 
range behaviour of the wave function under the influence of the potential V(r) and 
fulfil the boundary conditions at the origin" 

C, (0)= S,(0)= ~ (0 )=  0. 

For the sake of clarity the expansion of bound state wave functions is contrasted 
with the expansion of scattering wave functions in Table 1. In the case of bound 
state wave functions a homogeneous system of linear equations results from the 
variational principle; upper bounds to the eigenenergies are obtained from this 
secular problem. In the case of scattering wave functions the total energy E of the 
system is fixed, and one can no longer hope to satisfy 

(~ /~  - -  E )  I / / t r ia  1 ~- 0 

Table 1. Comparison of algebraic expansions for bound states and 
scattering states 

bound-state problem scattering problem 

trial function 7 ~ = ~ Ci(ol tI' = S  + tC + C/a~ 
i=0 i=1 

variational (2(f - E) 7 s = 0 
problem 6 ( ~g]~ - E I ~ ) - 0 

system of ( H - E ~ ) C = 0  (~-ccH-cb] ( ; ) = -  (~-'c) 
equations \ [bcU-b~/ [l_~b 

matrix (H),s= < qS,lWI4~;> (~)~c =<cl~e-elc> 
elements (5)~j = ( qSi{ 4~s ) (~-)sc = (S] a/f - E I C) 

(~)cb =(<cl*'-e[~>) 
("-)b~ = (<q~,[*'-- Elq~r 
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The best one can do is to obtain a wave function ~ for which 

J[~ ' ]  = < ~ u l ~ -  E[ ~r,> (6) 

is stationary. The variational principle, 6J=O with the ansatz (4), known as 
Kohn's  variational principle, leads to an inhomogeneous system of linear equations 

l-~cL~b 
\L=J (7) 

The fact that the variational principle is no longer a minimum principle, gives rise 
to the well known difficulties associated with the Kohn principle which have been 
discussed by numerous authors, notably by Nesbet [12], Harris [11] and more 
recently by Truhlar and coworkers [ 13]. The difficulties (non-uniform convergence, 
spurious (Schwartz) resonances) are due to the fact that 

may become zero without 7 j being a solution of the Schr6dinger equation (for a 
detailed discussion cf. E11, 12]). 

There are several ways of avoiding these difficulties. Nesbet [12] suggests using 
two complementary variational principles, the Kohn principle and the Rubinow 
principle (Eq. (6) with the ansatz ~[Iitria I = C 1 -~- t -  1 St + ~ i  ciq~); it may be shown 
that when one of them fails the other one will work. An alternative approach to the 
Kohn  principle, the minimum norm method, has been devised by Harris and 
Michels [11]. 

From a mathematical point of  view the difficulties with Kohn's  variational 
principle arise from the fact that the functional J is not positive definite. This 
observation suggests that one might consider alternative functionals. Several 
authors [13-16] studied variational methods based on minimizing 

I[7J]= < ( ~ -  E)7" I (Yt~ E)gJ> 

or the slightly more generally 

Iw [ 7'] : ~drw(r)(Yt ~ - E) 7'*(r)(gff - E) 7~(r) 

with a strictly positive weight function w(r). The functionals I, Iw satisfy all the 
axioms of a norm or, if one considers 

7 [~r,, ~ ] =  <(~- E)~ l (~P-E)~ > 

of  an inner product. This property guarantees that I =  0 is equivalent to 7 s being a 
solution of the Schr6dinger equation. Therefore, better convergence and an 
intrinsic criterion for convergence is to be expected from expansions determined 
from the variational principle: 

6,r [~ ' ]  = 0 (8) 
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Inserting the "LCAO-type" expansion (4) into (8) one obtains, in a straightforward 
manner, the inhomogeneous system of linear equations: 

V ~ V cb 

Vcc = ( ( • -  E)C [ ( ~ -  E )C) ,  etc. (9) 

Note that the structure of Eq. (9) is identical to that of Eq. (7), the only difference 
being the matrix elements. 

The variational principle (8) has been discussed by several authors [14-16] with 
electron-atom scattering in mind. To our knowledge, the principle (8) was first 
applied to scattering problems by K. J. Miller [14a] who also used it to derive 
bounds of the phase shift. His work includes extensive numerical studies, but 
computational problems are not given any special consideration. Furthermore, the 
limits of the applicability- from a practical point of v iew-  cannot be assessed 
from Miller's work. The scope of Ref. [14b] is similar. Its main concern is the 
approximation of I[TQ by a quadrature sum, and, again, upper and lower bounds 
to the phase shift. The work of Kanellopoulos [16] deals with the choice of basis 
sets enlarging and optimizing the basis set step by step; the case of multichannel 
scattering is also discussed. Phase shifts and upper and lower bounds are calculated 
with a basis set comprising only two square integrable functions. The possibility 
of approximating [ [7  s] by a quadrature sum is also investigated by Read [15a]; 
in a second paper [15b] he also discusses the optimal choice of the free functions 
for a potential that supports bound states, and hence allows for the possibility of 
resonances of the phase shift. 

The work of Wladawsky [17] is closely related to the minimum variance methods 
being essentially an inner projection version of them. The ideas of Wladawsky 
have been put into practice by Truhlar and Abdallah, Jr. [18]. They studied 
inelastic (ls-2s)-electron-hydrogen scattering, and obtained very encouraging 
results. Variational improvements of the reactance matrix were also given. 

We wish to elaborate on references [14-16]. In particular, we look into the 
following questions as hinted in the introduction: 1) Computational efficiency, 
2) applicability to heavy particle scattering and closely related, 3) limits of algebraic 
expansion methods. 

3. Numerical Considerations 

The system of linear equations (9) is the starting point of the following discussion. 
Three steps are necessary to implement this method : 

1) Calculation of the integrals over the basis functions 
2) Calculation of the matrix V from the integrals over the basis functions 
3) Solution of the linear equations. 

This reminds one of the usual quantum chemical procedures. There is, however, no 
self-consistency problem. 
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The first problem to be solved is the choice of  a basis set. Requirements to be 
fulfilled are: a) easy and rapid evaluation of the pertinent integrals, b) stable linear 
equations and c) rapid convergence. The fulfilment of requirement c) cannot be 
assessed a priori, requirements a) and b) suggest the choice of orthogonal polyno- 
mials for the square integrable functions. In the case o f / -wave  scattering the 
following boundary conditions are to be met 

lira Ig(r)~(tlnl(kr)+jl(kr))kr 
r ~ a o  

lira ~U(r) ~ (kr) 21 + 1, tz = tan 61 
r ~ o o  

k = (2mE) 1/2 being the radial momentum and ~ being the/-wave phase shift. This 
fixes the choices of the square-integrable functions 

~bl~)(r) = Ul ~) exp ( -  r/Zd)(r/d) 21+1L~ 2t+ 1)(r/d) (10) 

LlZl+~)(r/d) are associated Laguerre polynomials [-19]. NI ~ is a normalization 
factor the ~i 'h(l) fulfilling the normalization condition 

(z) 1 
( 6 i  Irld~])>=6,j (lOa) 

The properties of the basis set (10) and its application to scattering calculations 
were reviewed by Rotenberg [20]. We were also interested in the question whether 
there is a trade-off between b) and c). To this end we also investigated the two- 
parameter basis set 

~b~)(r) = N~ exp ( - r / Z d l ) ( r / d j  + ~L! 2~+ l)(r/d2) (10b) 

One might hope for faster convergence through the additional flexibility offered 
by this nonorthogonal basis set. 

The choice of  the "free" functions is straightforward 

S~(r)= krj~(kr) 

Cz(r) = (1 - exp ( -  yr)) 2l + 1 krnl(kr) (10c) 

The factor Fzl + 1 (r) = (1 -- exp ( -- 7r)) 2t + x in front of the irregular spherical Bessel 
function n~ removes its singularity at the origin which goes as (kr)- ~- 1 and ensures 
the correct asymptotic behaviour at the origin. 

(To effect more rational evaluation of  our matrix elements, we used in some of our 
calculations the alternative function 

~,(r)--Fzl+l(r)Sl(r) 

The results were virtually unaffected by this alternative choice.) 

For  the purpose of making test calculations, we chose an exponential repulsive 
potential 

V(r) = V o exp ( -  r/a) 

which, for the case of  s-wave scattering, admits an exact solution of the Schr6dinger 



Scattering Wave Functions for Molecular Systems 149 

5- 

-0.3- 

-0.4" 

t 
\\o.. / . / r  

Ho-5 

2.1~ 6 

o.oo o.ob o.o'4 o.o'6 0.0'8 0.1'0 d 

Fig. 1. Optimization of the range parameter d. Fixed parameters: N =  15, E =  0.05, 7 = 30.0 

equation [21]. The following parameters were fixed to mimic atom-molecule 
scattering: m---2000 a.u., a=0 .5  a.u., w(r)= 1. (Note that atomic units are used 
throughout the paper.) Changing Vo amounts to changing the size of the potential 
at the origin or to shifting the classical turning point. Vo has to be chosen such that 
it is essentially infinite at the origin in order that the exact solution which is 
computed for the interval - o o  ~< r ~  oo, and the converged computed solution 
(with the boundary condition at r =  0) coincided. In the calculations discussed 
below V o was chosen accordingly. The choice of  7 had no significant influence on 
the accuracy of  the solution over a wide range (1 ~< 7 ~< 50), and hence the dependence 
of  the phase shift on 7 is discussed no further. 

In the following we present some typical results in detail: 
I) Optimization of the range parameter d or (dl, d2) , 
2) Dependence on the size of  the basis set, 
3) Energy dependence of  the phase shift. 

Figure 1 shows the dependence of  the phase shift and the variance integral on the 
range parameter d. Note that the scale for 6 is linear whereas the scale for the 
variance integral is logarithmic. ~ is seen to depend significantly but not critically 
on d as is, in fact, to be expected. The quality of the wave function deteriorates 
when the expansion functions are concentrated in too narrow a range or distributed 
over too wide a range with respect to the interaction region. The phase shift and 
the variance integral correlate nicely so that I [ 7  t ] can be used as a measure of the 
quality of  the wave function with some confidence. 

Similar results are obtained for the more general basis set (10b). It turns out, 
however, that the best results are obtained for dl ~ d 2 . Therefore, we conclude that 
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N 5 I 

10 - 0 . 0 9 2 4  1 . 0 ( - 3 )  

15 - 0 . 8 5 2 1  1 . 8 ( - 4 )  

20 - 1.0877 4 . 6 ( -  5) 

25 - 1.2042 3 . 6 ( - 6 )  

30 - 1.2170 3 . 9 ( - 7 )  

exact - 1.2223 0.0 

Table 2. Convergence of the expansion Eq. (4). Parameters: 
dl =0 .065 ,  d2 = 0 . 0 5 0  , y =  10.0, [ Io=0.155,  E = 0 . 0 1 5  

basis set (10a) is preferable because of its orthogonality. A few representative 
results with basis set (b) are included in the results in Tables 2 and 3. 

Table 2 illustrates the convergence of  the expansion Eq. (4). It is uniform. The 
variance integral I drops by about an order of  magnitude for every 5 functions one 
adds to the basis set. The accuracy of the phase shift is rather poor for small basis 
sets, it rises sharply as N (the number of  square integrable functions) is increased 
from 10 to 15. 

Table 3 summarizes various aspects of  the energy dependence of  the phase shift. 
The number N of  the basis functions in the expansion has not been kept constant. 
The reason is that more and more basis functions are necessary to achieve a given 
accuracy as the energy is increased. At the highest energy given in the table 
( E =  0.095) even 48 functions do not lead to satisfactory convergence. The accuracy 
deteriorates at higher energies because the number of  nodes/length increases, and 
thus more basis functions are needed to build the wave function. It is not un- 
interesting to describe the behaviour of the expansion at higher energies: As the 
energy is increased the functions ~b i with small i (say 0 4  i~< 10) become less and 
less important; at the same time the functions with large i (say 25 ~< i ~< 48) contri- 
bute significantly. This seems to indicate that at higher energies functions with 
many nodes are important, and that an alternative basis set might be advantageous. 

Table 3. Energy dependence of the phase shift. Para- 
meters: d 1 =0 .05 ,  d2 =0.065,  7 =  10.0, / / o=0 .155  

E 

6e~ac t N 60 I 6 K 

0.015 20 - 1.0877 4 . 6 ( -  5) - 1.2013 

- 1.2223 25 - 1.2042 3 . 6 ( -  6) - 1.2218 

0.035 20 0.6761 1 . 5 ( -  3) 0.8113 
0.9104 25 0.9282 3 . 3 ( - 4 )  0.9302 

0.055 30 0.6248 1 . 7 ( -  3) 0.9000 

1.1109 40 1.1233 2 . 5 ( - 4 )  1.1167 

0.075 45 - 1.0489 7 . 3 ( - 4 )  - 1.2713 

- 1.3963 48 - 1.1530 5 .5 . ( -4)  1.3153 

0.095 45 - 0 . 2 4 3 9  5 . 0 ( - 4 )  - 0 . 5 4 2 3  
- 0.5473 48 - 0.2666 3 . 9 ( -  4) - 0.5434 
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Use of  contracted basis sets as discussed by Abdallah and Truhlar [22] may be a 
first step to improving the convergence of the minimum variance method. Another 
means of improving the convergence is the application of  variational corrections 
to be discussed in the next section. 

4. Variational Corrections 

Up to now only that part of the Hilbert space which is explicitly included in our 
expansion has been considered. It is, however, possible to estimate the contribution 
of  the functions not included in the expansion. This is the purpose of  variational 
corrections. To arrive at a correction to the phase shift assume that a zero order 
wave function ~g has been obtained somehow (e.g. by the minimum variance 
method discussed in this paper). Following Ref. [131, the exact wave function can 
then be partitioned into 

and, similarly the exact phase shift may be rewritten as 

(~ t : l --/exact 

From the asymptotic behaviour of the wave function one concludes that 6 7~,-~ 
Cl(r ) 6t as r--~ oo. 

Now consider the functional 

The difference is 

~)J=J[~]-J[~P . . . .  t ]  -~2~m 3t 

to first order. This estimate is obtained from the nonvanishing surface terms 
obtained by partial integration. Bearing in mind that J[g~ . . . .  t ] = 0  (7 ~ .. . .  t is a 
solution of the Schr6dinger equation !) the following estimate for the exact phase 
shift is obtained 

t . . . .  t -~ t -  2 ~  ( 7j]~f~ _ El qJ > + second and higher order terms. 

This correction is termed "Kohn  correction" in references [13] and [18]. The 
effect of applying it to our model problem can be seen in the last column of  Table 3. 
The accuracy of  the phase shifts is improved by one to two figures or even more in 
some critical cases. Note that the effort necessary to apply the correction is almost 
negligible as all the integrals required for the evaluation of  J [  7 t] have already been 
calculated (for details see the Appendix). The evaluation of J is a process that is 
proportional to N 2. 
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5. Summary and Outlook 

This paper was intended as a preliminary study of the applicability of the minimum 
variance method to realistic molecular scattering problems. Important questions 
regarding the use of this method can be answered in this case on the basis of a 
simple potential scattering problem: The essentially new aspect is the use of a basis 
set for the radial part of the wave function. All problems arising in this context can, 
however, be studied with a one-dimensional problem. 

More specifically one has the following advantages and disadvantages as compared 
to methods using numerical integration. 

A. Advantages: 

1) The wave function fulfils the boundary conditions automatically; no 
problems with closed channels arise. 

2) The wave function is available without additional effort. 
3) All the bound-bound integrals may be stored for repeated use as they are not 

energy-dependent (cf. Appendix). 
4) The minimum variance method furnishes a criterion for the accuracy 

achieved. 
5) Variational corrections may be applied easily. 
6) Computational experience from quantum chemical procedures may be used 

(e.g. contraction of basis sets). 

B. Disadvantages." 

1) Matrix elements involving ( J g -  E) 2 have to be evaluated. 
2) A suitable basis set has to be chosen and its parameters have to be optimized. 
3) Large basis sets preclude keeping all the matrix elements in core; hence 

great care must be exercised in the organization of I/O-operations and files 
on a background storage. 

4) With increasing energy and/or reduced masses more and more basis 
functions are necessary to attain convergence. 

We should like to point out the great potential economy of this method. Repeated 
use of integrals is already implemented in our programs. Attention should also be 
drawn to the fact that the wave function is available for further use; this may be 
important for the evaluation of certain matrix elements, e.g. transition dipole 
moments. This might be useful for the study of processes such as photodissociation. 

The extension of the formalism to inelastic, and, more important, to reactive 
processes is trivial; expansion (4) needs to be supplemented by appropriate internal 
functions, and free functions for the inelastic channels. These matters will be 
discussed in more detail in a forthcoming study [-23] of the Secrest-Johnson 
model [-24]. The minimum-variance method in its present stage of development is 
particularly suited for process with low total energies (E < 1 eV); rotationally 
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inelastic scattering of light molecules is such a process of chemical and astrophysical 
interest. Computational studies pertaining to these processes are in preparation. 

Appendix : Evaluation of  the Matrix Elements 

In this appendix we outline briefly how the matrix elements for the basis set (10) 
are evaluated. For sake of simplicity, we consider the orthogonal basis set, Eq. 
(10), only. First consider the action of (~f~- E) on the expansion function. Let us 
define 

( ~ - E ) f = - f  (A1) 

Then we have 

(A2) 

k dF2t+l 
rn - dr krn1_ 1 (kr) 

for the "bound" and the "free" functions, respectively. Forming matrix elements 
( f [ o )  we have to consider three classes of integrals 

1) bound-bound integrals 
2) bound-free integrals 
3) free-free integrals 

which will be discussed separately in the following. In case 2) only the integrals 
pertinent to s-wave scattering will be given. The free-free integrals are integrals over 
trigonometric functions and exponentials in the case of s-wave scattering and are 
not given. 

a) Bound-bound integrals." 

After expanding ( ~  (l)]q~ ~)) two types of integrals arise 

co 

11 = j'y21+ 2 exp ( - y ) y - " L ~  2t+l)(y)L m(21+ i)(y) dy 
0 

oo 

12 ~y21+2 exp - r  (2l+1) (21+1) = ( - y l V ( y ) y  L n (y)L m (y) dy 
0 

(A3) 

and a similar integral involving V2(y).  Here an exponential is assumed for V(y). 
Hence, I z takes the form 

co 

12 = (. y21+ 2 exp ( - y) exp ( - y/a)y-  ~L~ 2l + l)(y)Lt2ml+ l)(y ) dy 
0 
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All these integrals can then be reduced to the normalization integral 

(N~)) -2=~y 2t+l exp ( 2 / + 1 )  ( 2 / + 1 )  ( -y )L , ,  (y)L m (y) dy 
o 

by means of the following sum rules [19] 

~.=o ~ C._m(y)=L(.~)(y) (A4) 

- ) L . - m ( y ) - L .  (zy) (A5) 
, . = o - - \ m /  

Applying sum rule (A4), i.e. expanding the polynomials L<. 2t+l) in terms of the 
polynomials L <2z+2-r) the integrals Ix can be evaluated in a straightforward 
manner: 

oo 
~y2 l+Z- r  exp ( - y )  ( 2 / +  1) ( 2 / +  Ln ( y ) L  m X)(y) 
o 

The more general integral I z is reduced to the case discussed above by rescaling it 
using sum rule (A5) : 

oo 

12 = ~ dyy 2z+ 2-r exp [ - ( 1  + p)y]L(. 2l+ X)(y)L~l+ ~)(y) 
o 

=(1 +p)r-/z-3 ~ dy, y, 2l+ 2-r exp ( -  y')L~2l+ l)(y'/(1 + p)) 
o 

x L(,. 2z+ 1)( y'/(1 +p)) 

= ( l + p ) r - 2 ' - 3 ~ d y ' y ' Z ' + Z - ~ [ ~ C n + 2 f + l ) ( l + p ) - " + ' ( 1 - ~ ) ~  
o L i = o \  

)<L(21~l,(yt)l~ ~ (m-[-2l-~-l)(1Avp)-m+j(l~)t(m21_~l)(y,)] 
Li=o\ J 

b) Bound-free integrals." 

The most general type of integral arising in the case of s-wave scattering is given by 

oo 

13 = ~ dy exp ( - y / 2 - p y  + iky)y t+ 1 -rL(2l+ 1)(y) 0 
This can be evaluated by analytically continuing the integral I z and applying the 
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techniques outlined above for the bound-bound integrals. The final result is 

F(l+n-r+l) (p-ik-�89 n 
I3= n! (p-ik+�89 l+"+l-r 

( p - i k + ~  
x 2F1 \ - n ' / + r + 2 ;  - l+r -n ;  p-ik-�89 

where 2F1 is Gauss' hypergeometric function which in the present case reduces to a 
polynomial. 
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